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Reflection of Thermoelastic
Waves From the Insulated
Surface of a Solid Half-Space
With Time-Delay
This paper is devoted to study the reflection of thermoelastic plane waves from the ther-
mally insulated stress-free boundary of a homogeneous, isotropic and thermally conduct-
ing elastic half-space. A new linear theory of generalized thermoelasticity under heat
transfer with memory-dependent derivative (MDD) is employed to address this study. It
has been found that three basic waves consisting of two sets of coupled longitudinal
waves and one independent vertically shear-type wave may travel with distinct phase
speeds. The formulae for various reflection coefficients and their respective energy ratios
are determined in case of an incident coupled longitudinal elastic wave at the thermally
insulated stress-free boundary of the medium. The results for the reflection coefficients
and their respective energy ratios for various values of the angle of incidence are com-
puted numerically and presented graphically for copper-like material and discussed.
[DOI: 10.1115/1.4046924]

1 Introduction

Scott Blair’s model [1], which is basically a material model,
includes a formula for memory phenomena in various disciplines.
The model takes the form

0Da
t eðtÞ ¼ jrðtÞ (1)

where 0Da
t eðtÞ denotes the fractional-order derivative, which

depends on the strain history from 0 to t. For integral value of
a ¼ n; 0Da

t eðtÞ ¼ dneðtÞ=dtn, and j > 0 is a constant. Equation (1)
works not only in modeling viscoelastic materials but also in mod-
eling biological kinetics with memory.

A fractional-order derivative is a generalization of an integer
order derivative and integral. It originated from a letter of L’Hopi-
tal to Leibnitz in 1695 regarding the meaning of the half-order
derivative. The kernel function of a fractional derivative is termed
the memory function, but it does not replicate any physical pro-
cess. Imprecise physical meaning has been a big obstacle that
keeps fractional derivatives lagging far behind the integer-order
calculus. There are several definitions of a fractional derivative.
The Riemann–Liouville derivative is one of the most standard
definitions

0Da
t e tð Þ ¼ 1

C n� að Þ
dn

dtn

ðt

0

e sð Þ
t� sð Þ1þa�n

ds; n� 1 � a < n

where Cð�Þ is the Euler’s gamma function and n is an integer. A
memory process generally consists of two stages: the first is short,
with permanent retention at the beginning, and it cannot be
neglected in general, and the second is governed by the fractional
model Eq. (1). The critical point between the fresh stage and the
working stage is usually not the origin. This is quite different

from the traditional fractional models of one stage. The key point
is that the order of a fractional derivative is an index of memory.
The dimensionless form of the solution of Eq. (1) is

EðgÞ ¼ ga � ðg� 1Þa (2)

where g ¼ t=tM and EðgÞ ¼ eðtÞ=eM, where eM is the strain at the
end of time of creeping t¼ tM. Equation (2) reveals that EðgÞ
increases with an increase in a. The higher the value of the index
a, the slower is the forgetting during the process. In particular, at
a ¼ 0; E ¼ 0, meaning that “nothing is memorized,” and E¼ 1
for a¼ 1, which means that “nothing is forgotten.” Therefore, the
fractional order a is basically termed as the index of the memory
effect.

For a standard creep and recovery process, the specimen is usu-
ally loaded under a constant stress rðtÞ ¼ r0 from 0 to tM, and the
load is removed at the instant t¼ tM, then rðtÞ ¼ 0 for t � tM. If
H(t) is the Heaviside function, Eq. (1) takes the following form:

0Da
t eðtÞ ¼ jr0ðHðtÞ � Hðt� tMÞÞ

where 0Da
t eðtÞ is the Riemann–Liouville fractional-order deriva-

tive with zero initial condition. The superposition method gives
the solution of the above equation as follows:

e tð Þ ¼ jr0

C 1þ að Þ taH tð Þ � t� tMð ÞaH t� tMð Þ
� �

This is in agreement with the early observation of the behavior
of some viscoelastic materials.

The nonintegral (fractional)-order derivatives and the fractional
differential equations have gained considerably more attention in
the fields of applied sciences and various engineering disciplines
[1]. Diethelm [2] incorporated a kernel function and modified a
Caputo-type fractional-order derivative as

Da
af ðtÞ ¼

ðt

a

kaðt� nÞf ðmÞðnÞdn
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where kaðt� nÞ is the kernel function and f ðmÞ is the mth order
derivative. In applications, kaðt� nÞ takes some specific form,
e.g.,

ka t� nð Þ ¼ t� nð Þm�a�1

C m� að Þ

Wang and Li [3] proposed another form of the fractional deriv-
ative with arbitrary kernel Kðt� nÞ (can be chosen freely) over a
slipping interval ½t� s; t� as follows:

D 1ð Þ
s f tð Þ ¼ 1

s

ðt

t�s
K t� nð Þf 0 nð Þdn (3)

where s ð> 0Þ is called the delay time, which can also be chosen
freely. The preceding modifications of fractional-ordered deriva-
tives are termed memory-dependent derivatives (MDDs). In gen-
eral, the mth order memory-dependent derivative of a
differentiable function f(t) relative to the time delay, a> 0 is
defined as

D mð Þ
a f tð Þ ¼ 1

s

ðt

t�a

K t; nð Þf mð Þ nð Þdn

where the time delay a denotes the memory scale, and the kernel
function Kðt:nÞ must be a differentiable function with respect to
its arguments. The kernel function and the memory scales must be
chosen in such a way that they are compatible with the physical
problem, so this type of derivative provides more possibilities to
capture the material response [3]. Generally, the memory effect
needs weight 0 � Kðt� nÞ � 1 for n 2 ½t� s; t� so that the magni-
tude of Dsf ðtÞ is usually smaller than that of the common deriva-
tive f 0ðtÞ. Simply the right-hand side of Eq. (3) is a weighted
mean of f 0ðtÞ. As n 2 ½t� s; t�, one can easily understand that the
function f ðnÞ takes value from different points on the time interval
½t� s; t�. Considering our present time as t, we can say ½t� s; tÞ is
the past time interval. Thus, we conclude the main feature of
MDD, that is the functional value in real-time depends on the past
time also. That is why Ds is called the nonlocal operator, whereas
integer order derivative (or integration) is a local operator (i.e., it
does not depend on the past time). The kernel function Kðt� nÞ
can be chosen freely, such as 1; ½1� ðt� nÞ�; ½1� ðt� nÞ=s�p for
any positive real number p, which may be more practical [3].
They are a monotonic increasing function from 0 to 1 in the inter-
val ½t� s; t�. According to the nature of the problem, one can
select a suitable kernel function of his/her choice.

From the Maxwell–Cattaneo theory [4] to Green-Naghdi gener-
alized thermoelasticity models [5], it is well established that the
thermal memory has a significant role in the theory of generalized
thermoelasticity [6–9]. In the 21st century, memory components
have been introduced in terms of fractional-order derivatives in
numerous forms, see Refs. [10–12] for details. In these fractional
models of modified heat flux laws, the memory response is
described by the fractional index parameter. The MDD were first
incorporated in the Fourier’s law of heat conduction [4], a new
hyperbolic-type heat conduction equation, by Wang and Li [3].
This new generalization of hyperbolic-type heat conduction mod-
els is accepted as the modified heat conduction law with meas-
uring memory. Following the work of Wang and Li [3], Yu et al.
[13] developed a novel generalized thermoelasticity model based
on generalized Fourier’s law of heat conduction with MDD by
introducing

ð1þ sDaÞqi ¼ �KTH;i (4)

where Daf ðtÞ ¼ Dð1Þa f ðtÞ. They also studied slim strip problem of
thermoelastic medium under this new theory. Later, Ezzat et al.
[14–16] introduced the first-order MDD, instead of fractional cal-
culus, into the rate of heat flux in the Lord-Shulman (LS) theory

[6] of generalized thermoelasticity to denote memory dependence
as

ð1þ sDsÞqi ¼ �KTH;i (5)

where s is introduced as the delay time parameter, qi are the heat
flux components, H ¼ T � T0 is the temperature increment above
the uniform reference temperature T0 of the medium, T is the
absolute temperature of the medium, and KT is the thermal con-
ductivity. Above equation has more clear physical meaning. Equa-
tions (4) and (5) provide the following advantages compared with
the aforementioned amendments of Fourier’s law by using frac-
tional derivatives: (i) the influence of memory dependency claims
its superiority in terms of memory scale parameter; (ii) in a limit-
ing sense, this simplification develops the Lord-Shulman model of
generalized thermoelasticity and (iii) because the kernel function
and the memory scale parameters may be chosen subjectively, it
is more malleable in many practical applications. Several physical
problems in the context of this new theory of generalized thermo-
elasticity with MDD have been reported in the literatures [14–19].

Wave propagation and wave reflection phenomena are applica-
ble in various fields like geophysical exploration, mineral and oil
exploration, and seismology. The body wave propagation in ther-
moelastic solids is applicable in various fields of engineering.
Several problems on plane harmonic wave propagation in coupled
and generalized thermoelasticities have been investigated by
many authors during the last five decades. Some of the notable
among them are found in the literatures [20–31]. Recently, Li
et al. [32] investigated the reflection and transmission of elastic
waves at an interface with consideration of couple stress and ther-
mal wave effects. Sarkar and Tomar [33] studied plane waves in
nonlocal thermoelastic solid with voids. Waves in dual-phase-lag
thermoelastic materials with voids based on Eringen’s nonlocal
elasticity were discussed by Mondal et al. [34]. Das et al. [35]
solved the problem of reflection of thermoelastic wave from an
insulated and isothermal stress-free boundary of a solid half space
without energy dissipation. They preferred to investigate the prob-
lem by specifying the angles of incidence and reflections with the
normal to the half-space. Sarkar et al. [36,37] addressed the reflec-
tion of thermoelastic waves from the boundary of a solid half-
space under memory-dependent heat transfer.

In the present contribution, the reflection phenomena of
coupled thermoelastic plane waves from the thermally insulated
stress-free boundary of a homogeneous, isotropic and thermally
conducting solid half-space is addressed in the context of the gen-
eralized thermoelasticity with MDD [15]. It has been observed
that three basic waves consisting of two sets of coupled dilata-
tional thermoelastic waves and one independent shear-type wave
may travel with distinct phase speeds. The formulae for various
reflection coefficients and their respective energy ratios are deter-
mined due to the incidence of a coupled dilatational elastic wave
at the thermally insulated stress-free boundary of the medium.
The numerical results for the reflection coefficients and their
respective energy ratios for various values of the angle of
incidence are illustrated graphically for copper like material to
highlight the effect of time-delay, kernel function, Poison ratio,
and the thermomechanical coupling parameter. The phase speeds
and the attenuation coefficients are also computed numerically
and plotted graphically to study the effect of the various parame-
ters of interest.

2 Governing Equations

Following Ezzat et al. [14], the basic governing equations of
the generalized thermoelasticity with memory-dependent deriva-
tive heat transfer for a homogeneous, isotropic, and thermally con-
ducting elastic solid in the general Cartesian coordinates system
are (in absence of heat sources and body forces)

sij ¼ 2leij þ ðke� cHÞdij (6)

092101-2 / Vol. 142, SEPTEMBER 2020 Transactions of the ASME



lui;jj þ ðkþ lÞuj;ij � cH;i ¼ q€ui (7)

KTH;ii ¼ ð1þ sDsÞðqCE
_H þ cT0 _eÞ (8)

where i; j ¼ 1; 2; 3; eij ¼ ðui;j þ uj;iÞ=2. Here, sij are the compo-
nents of the stress tensor, eij are the components the infinitesimal
strain tensor in linear elasticity, e ¼ ui;i is the cubical dilatation, ui

are the displacement components, k, l are Lam�e constants, q is
the mass density, CE is the specific heat at the constant strain, c ¼
ð3kþ 2lÞaT is the thermoelastic coupling parameter, and aT is the
coefficient of volume expansion.

Using the definition (3) of memory-dependent derivative,
Eq. (8) can also be rewritten as

KTH;ii ¼ ðqCE
_H þ cT0 _eÞ þ

ðt

t�s
Kðt� nÞðqCEH;nn þ cT0e;nnÞdn

(9)

Equation (8) or (9) is the generalized heat conduction equation
with memory-dependent derivative having s as the time-delay
parameter. The dynamic coupled theory of heat conduction law
follows as the limit case when s! 0. Note that, in the above
equations, a comma followed by a suffix denotes spatial deriva-
tive and a superposed dot stands for time differentiation.

3 Formulation of the Problem

We consider a linear, homogeneous, and isotropic thermally
conducting elastic medium occupying the half-space

X ¼ fðx; y; zÞ : �1 < x; y <1; 0 � z <1g

Let the origin O of the rectangular Cartesian coordinate system
Oxyz be fixed at a point on the boundary z¼ 0 with z-axis directed
normally inside the medium X and x-axis is directed along the
horizontal direction. The y-axis is taken in the direction of the line
of intersection of the plane wavefront with the plane surface. If
we restrict our analysis to a plane strain problem parallel to the
xz-plane, then all the field variables may be taken as functions of
x ; z, and t only. Hence, the displacement components are

u1 ¼ uðx; z; tÞ; u2 ¼ vðx; z; tÞ ¼ 0; u3 ¼ wðx; z; tÞ

Then Eqs. (6)–(8) reduce to

sxx ¼ 2lu;x þ ke� cH (10)

szz ¼ 2lw;z þ ke� cH (11)

sxz ¼ lðu;z þ w;xÞ (12)

lr2uþ ðkþ lÞe;x � cH;x ¼ q€u (13)

lr2wþ ðkþ lÞe;z � cH;z ¼ q€w (14)

KTr2H ¼ ð1þ sDsÞðqCE
_H þ cT0 _eÞ (15)

In this study, we shall deal with the following kernel function
[14]:

K t� nð Þ ¼ 1� 2b

s
t� nð Þ þ a2 t� nð Þ2

s2

¼

1 if a ¼ b ¼ 0

1� t� n
s

� �
if a ¼ 0; b ¼ 1

2

1� t� nð Þ if a ¼ 0; b ¼ s
2

1� t� n
s

� �2

if a ¼ b ¼ 1

8>>>>>>>>><
>>>>>>>>>:

(16)

where a and b are constants.

To transform the above equations in nondimensional forms, we
define the following nondimensional variables

x0;z0ð Þ ¼CLg x;zð Þ; u0;w0ð Þ¼CLg u;wð Þ; t0 ¼C2
Lgt; H0 ¼ cH

qC2
L

;

r0ij¼
rij

qC2
L

where C2
L ¼ ðkþ 2lÞ=q is the speed of classical longitudinal

(dilatational) wave and g ¼ qCE=KT is the thermal viscosity.
Introducing the above parameters in Eqs. (10)–(15) and suppress-
ing the primes for convenience, we obtain

sxx ¼ 2bu;x þ ð1� 2bÞe�H (17)

szz ¼ 2bw;z þ ð1� 2bÞe�H (18)

sxz ¼ bðu;z þ w;xÞ (19)

br2uþ ð1� bÞe;x �H;x ¼ €u (20)

br2wþ ð1� bÞe;z �H;z ¼ €w (21)

r2H ¼ ð1þ sDsÞð _H þ e _eÞ (22)

where r2 � @2=@x2 þ @2=@z2; b ¼ l=ðk þ 2lÞ ¼ ð1 � 2rÞ=
½2ð1 � rÞ� is the ratio of the classical shear wave speed to
the classical longitudinal wave speed, r is the Poison’s ratio, and
e ¼ c2T0=½qCEðk þ 2lÞ� is defined as the dimensionless thermo-
elastic coupling constant.

Introducing the displacement potentials / (corresponds to dila-
tational wave) and w (corresponds to shear-type wave) through
the Helmholtz vector decomposition technique as

u ¼ @/
@x
� @w
@z
; w ¼ @/

@z
þ @w
@x

(23)

and substituting these into Eqs. (20)–(22), we obtain

r2/� €/ �H ¼ 0 (24)

br2w� €w ¼ 0 (25)

r2H ¼ ð1þ sDsÞð _H þ er2 _/Þ (26)

Equations (24) and (26) show that the thermal field H is
coupled with the potential / and so creates two quasi-thermal-
elastic waves, one of them is called quasi-elastic wave (qP-wave)
while the other one is called quasi-thermal wave (qT-wave).
Equation (25) creates one independent vertically polarized shear-
type wave (SV-type wave).

4 Dispersion Equation and Its Solution

For a harmonic plane wave propagating in the direction where
the wave normal vector lies in the xz-lane making an angle h0

with the positive z-axis, the solutions of Eqs. (24)–(26) may be
assumed as

ð/;H;wÞ ¼ ðA/;AH;AwÞexp fikðx sin h0 � z cos h0Þ � ixtg
(27)

where A/; AH; Aw are the constants (possible complex) represent-
ing the coefficients of the wave amplitudes, i ¼

ffiffiffiffiffiffiffi
�1
p

, k is the
wavenumber to be determined, and x is the assigned real angular
frequency.

Substituting Eq. (27) into Eqs. (24)–(26), we get

ðk2 � x2ÞA/ þ AH ¼ 0 (28)

Journal of Heat Transfer SEPTEMBER 2020, Vol. 142 / 092101-3



k2 � x2

b

 !
Aw ¼ 0 (29)

iexð1þ GÞk2A/ þ ½k2 � ixð1þ GÞ�AH ¼ 0 (30)

where Eq. (16) gives

G � G s;xð Þ ¼
1

s2x2
½exp isxð Þf2a2 � s2x2 a2 � 2bþ 1ð Þ

�2isx a2 � b2ð Þg � 2ibsx� 2a2 þ s2x2�

The condition for the existence of nonvanishing solution for A/
and AH of the system of Eqs. (28) and (30) yields the following
dispersion relation:

k4 � L1k2 þ L2 ¼ 0 (31)

where L1 ¼ ixð1þ GÞð1þ eÞ þ x2; L2 ¼ ix3ð1þ GÞ:
The quadratic Eq. (31) in k2 is the general dispersion relation

for wave propagation in thermoelastic solid with MDD. Clearly,
the coefficients L1 and L2 are complex for x > 0. The two roots
of Eq. (31) and the only root of Eq. (29) are given by

k2
2;1 ¼

1

2
L16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 � 4L2

q� �
; k2

3 ¼
x2

b

Here, k2
1 corresponds to “–” sign and k2

2 corresponds to “þ”
sign. Out of the four roots 6k1;2, we consider those two roots only
for which =ðk1;2Þ � 0 for the waves to be physically realistic [37].
These two complex wavenumbers give us two distinct types of
attenuated and dispersive coupled dilatational waves: one quasi-
elastic wave (qP-wave) and one quasi-thermal wave (qT-wave).
Besides, since the wavenumbers of both the qP- and qT-wave are
complex, they are inhomogeneous waves. The phase speeds Vj

and attenuation coefficients Qj ðj ¼ 1; 2Þ of the qP- and qT-waves
can be obtained from the formulae [38]

Vj ¼
x
< kjð Þ

; Qj ¼ = kjð Þ (32)

where <ð�Þ and =ð�Þ denote the real and imaginary part,
respectively.

In case of uncoupled thermoelasticity ðe ¼ 0Þ, we find

V1 ¼ 1; V2 ¼
ffiffiffiffi
x
p

< i 1þ Gð Þ½ �
1
2

Thus, for the present problem (e 6¼ 0), we conclude that while
V1 represents the speed of qP-wave, V2 the speed of qT-wave
(according to our consideration of the sign of k2

1 and k2
2). In case

of e 6¼ 0, the qP-wave and qT-wave are coupled dilatational-
thermal wave and the coupling is measured by the following
amplitudes ratios:

AH

A/

� �
j

¼ x2 � k2
j

	 

¼

ex 1þ Gð Þk2
j

x 1þ Gð Þ þ ik2
j

h i ¼ fj j ¼ 1; 2ð Þ

Equation (25) shows that there exists one SV-type wave of
wave number k3, which remains unaffected by the thermal wave.
The phase speed V3 and the attenuation coefficient Q3 of this
wave are

V3 ¼
ffiffiffi
b

p
; Q3 ¼ 0

which tell us that the SV-type wave is nondispersive and experi-
ence no attenuation.

4.1 Perturbation Solution of Dispersive Waves. The pertur-
bation method has been widely used (Nayfeh and Nemat-Nasser
[20], Agarwal [21], Roychoudhuri [22,25], Sharma et al. [29]) to
study the wave propagation problems in classical (coupled) and
nonclassical (generalized) thermoelastic continua. Here, our aim
is to derive the perturbation solution of the instant problem in this
section. The secular Eq. (31) can also be rewritten as

f ðk2Þ � egðk2Þ ¼ 0 (33)

where

f ðk2Þ ¼ k4 � k2½ixð1þ GÞ þ x2� þ ix3ð1þ GÞ;
gðk2Þ ¼ ixð1þ GÞk2

For most of the materials, the thermo-mechanical coupling
parameter e is very small and therefore, we develop series expan-
sions in terms of e for the roots k2

j ðj ¼ 1; 2Þ of the Eq. (33) in
order to explore the effect of various interacting fields on the
waves. Thus, for e� 1, we obtain

k2
1 eð Þ ¼ x2 1� 1þ Gð Þ

1þ Gþ ixð Þ eþ � � �
� �

;

k2
2 eð Þ ¼ ix 1þ Gð Þ 1þ 1þ Gð Þ

1þ Gþ ixð Þ eþ � � �
� � (34)

Using the perturbation solution (34) into Eq. (32), the phase
velocities and attenuation coefficients can be obtained for small e.

5 Reflection Phenomenon of Thermoelastic Waves

In view of the results of Secs. 4–6, consider an incident qP-
wave propagating obliquely toward the surface z¼ 0 of the ther-
moelastic medium as shown in Fig. 1. Assuming that the radiation
in vacuum is neglected, when it impinges the boundary z¼ 0,
three reflected waves in the medium X are created. Suppose the
reflected qP-, qT- and SV-type waves make angles h1; h2, and h3,
respectively, with the positive z-axis. Then the complete structures
of the wave fields consisting of the incident and the reflected
waves in the medium X may be written as

/ ¼ A0 exp fik1ðx sin h0 � z cos h0Þ � ixtg

þ
X2

j¼1

Aj exp fikjðx sin hj þ z cos hjÞ � ixtg (35)

H ¼ f1A0 exp fik1ðx sin h0 � z cos h0Þ � ixtg

þ
X2

j¼1

fjAj exp fikjðx sin hj þ z cos hjÞ � ixtg (36)

w ¼ B1 exp fik3ðx sin h3 þ z cos h3Þ � ixtg (37)

where A1; A2, and B1 represent the coefficients of amplitudes of
the reflected qP-, qT- and SV-waves, respectively, and A0

Fig. 1 Schematic of the present problem: incident and
reflected thermoelastic waves at the surface z 5 0
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represents the amplitude coefficient of the incident qP-wave with
phase speed V1. The reflection coefficients are defined as the
amplitude ratios of the reflected wave to the incident wave and are
determined by the well-defined boundary conditions on the sur-
face z¼ 0. In the present problem, we consider the surface z¼ 0
as stress-free and thermally insulated. Mathematically, these con-
ditions can be written as

szz ¼ szx ¼ 0;
@H
@z
¼ 0 at z ¼ 0 (38)

In terms of potential functions, the stress-free conditions in
Eqs. (18) and (19) can be written as

ð/;xx þ /;zzÞ þ 2bðw;xz � /;xxÞ �H ¼ 0 (39)

2/;xz þ w;xx � w;zz ¼ 0 (40)

In order to satisfy the above boundary conditions at z¼ 0, the
following relations between the angle of the incident wave and
the angles of the reflected waves need to be hold on z¼ 0:

k1 sin h0 ¼ k1 sin h1 ¼ k2 sin h2 ¼ k3 sin h3 (41)

Relation (41) can also be written in the form

h0 ¼ h1 and
sin h0

V1

¼ sin h2

V2

¼ sin h3

V3

(42)

which is often refereed as extended Snell’s law.
Substituting Eqs. (35)–(37) into the boundary conditions

(38)–(40) and using the relation (41) or (42), the following system
of equations for the reflection coefficients X1 ¼ A1=A0; X2 ¼
A2=A0; X3 ¼ B1=A0 is obtained:

a11 a12 a13

a21 a22 a23

a31 a32 0

2
4

3
5 X1

X2

X3

2
4

3
5 ¼ �a11

a21

a31

2
4

3
5 (43)

where

a11 ¼ x2 � 2bk2
1 sin 2h0; a12 ¼ x2 � 2bk2

2 sin 2h2;

a13 ¼ x2 sin 2h3

a21 ¼ k2
1 sin 2h0; a22 ¼ k2

2 sin 2h2; a23 ¼ �k2
3 cos 2h3

a31 ¼ f1k1 cos h1; a32 ¼ f2k2 cos h2

After solving the system (43), we obtain the reflection coeffi-
cients in explicit forms as follows:

X1 ¼
b2f2k2k2

3sin 4h0ð Þcos h2ð Þ
�f1k1cos h1ð Þ x2cos 2h0ð Þ þ 2b2k2

2sin 2h0 � h2ð Þsin h2ð Þ
� �

þ 2b2f2k2
1k2sin 2h0 � h1ð Þsin h1ð Þcos h2ð Þ þ f2k2x2cos 2h0ð Þcos h2ð Þ

X2 ¼
b2f1k1k2

3sin 4h0ð Þcos h1ð Þ
f1k1cos h1ð Þ x2cos 2h0ð Þ þ 2b2k2

2sin 2h0 � h2ð Þsin h2ð Þ
� �

� 2b2f2k2
1k2sin 2h0 � h1ð Þsin h1ð Þcos h2ð Þ þ f2k2x2 �cos 2h0ð Þð Þcos h2ð Þ

X3 ¼
f1k1cos h1ð Þ 2b2k2

2sin h2ð Þsin 2h0 þ h2ð Þ � x2cos 2h0ð Þ
� �

� 2b2f2k2
1k2sin h1ð Þsin 2h0 þ h1ð Þcos h2ð Þ þ f2k2x2cos 2h0ð Þcos h2ð Þ

f1k1cos h1ð Þ x2cos 2h0ð Þ þ 2b2k2
2sin 2h0 � h2ð Þsin h2ð Þ

� �
� 2b2f2k2

1k2sin 2h0 � h1ð Þsin h1ð Þcos h2ð Þ þ f2k2x2 �cos 2h0ð Þð Þcos h2ð Þ

The above expressions show that the reflection coefficients
depend on the material properties of the medium X, angle of inci-
dence h0 and the time-delay parameter s.

It is to be noted that, for uncoupled thermoelasticity, we put
e ¼ 0 which gives fj ¼ 0 ðj ¼ 1; 2Þ. Hence, there will be no
reflected qT-wave in uncoupled thermoelasticity. Consequently,
X2 ¼ 0 at all angle of incidence h0.

6 Energy Partitioning: Energy Ratios of the Reflected

Waves Due to an Incident qP-Wave

In order to physically justify the analytic expressions of the
amplitude ratios in the present problem, we must need to verify
the energy balance law at the boundary surface z¼ 0. Let us con-
sider the energy partition between the various reflected waves at a
surface element of unit area. Following Ref. [38], the rate of
energy transmission, say P	 per unit area at a free surface of a
thermoelastic solid, is given by

P	 ¼ szz _w þ szx _u (44)

Note that here the contribution of thermal energy as well as the
interaction energy is negligibly so small compared to the other
energy terms. Also, even if these energies are accounted in
Eq. (44), these do not change the results qualitatively. However,
some physical situations may arise where the contribution of ther-
mal energy as well as the interaction energy is comparable to the

other energy and in that case it is essential to include these ener-
gies in Eq. (44) (cf. Li et al. [39]).

The energy ratio Ej corresponding to the j-th reflected wave at
z¼ 0 is obtained by calculating the ratio of “P	 for the reflected
wave” to “P	 for the incident wave,” i.e.,

Ej ¼
P	 reflected waveð Þ
P	 ðincident waveÞ ; j ¼ 1; 2; 3 (45)

Substituting Eqs. (35)–(37) into Eq. (44) through the Eqs. (18),
(19), and (23), we obtained P	 for various incident and reflected
waves. Hence, the analytical expressions of the energy ratios
E1; E2, and E3 for the reflected qP-, qT- and SV-type waves,
respectively, due to the incident qP-wave can be calculated using
Eq. (45) as

E1 ¼ �X2
1; E2 ¼ �

tan h0

tan h2

X2
2; E3 ¼ �

tan h0

tan h3

X2
3;

0 deg < h0 < 90 deg

We also observe that the energy ratios depend on the elastic
properties of the medium, angle of incidence, time-delay parame-
ter, and the reflection coefficients. Since surface waves are not
involved in energy conservation, the conservation of energy at the
boundary surface z¼ 0 may be expressed as jE1 þ E2 þ E3j 
 1.

7 Numerical Results and Discussions

In this section, we perform some numerical results in order to
illustrate the analytical results calculated in Sec. 7 for the
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reflection coefficients, energy ratios, phase speeds, and the attenua-
tion coefficients. For this purpose, copper-like material is modeled
as the thermoelastic material for which the following values of the
different physical constants are borrowed from Ref. [36].

Using MATLAB software, the variations of the absolute values
of the reflection coefficients Xj ðj ¼ 1; 2; 3Þ with respect to
the angle of incidence h0 are presented graphically through
Figs. 2–5 and Supplementary Figs. 1–5 are available in the

Fig. 2 (a)–(c) Variation of jXj j versus h0 for different s when K (t2n) 5 12(t2n)

Fig. 3 (a)–(c) Variation of jXj j versus h0 for different K (t ; n) when s 5 0:05
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Supplemental Materials on the ASME Digital Collection for the
incident qP-wave. Using the numerical values in the Table 1,
numerically computed values of the reflection coefficients, energy
ratios, phase speeds, and the attenuation coefficients are plotted
with h0 for the range 0 deg � h0 � 90 deg in some different cases.

In this work, we devoted to investigate the reflection phenom-
ena of thermoelastic waves at a stress-free isothermal boundary
by considering the memory dependence for heat transfer with
thermal relaxation. The key parameters are the time-delay factor
and the kernel function of the MDD and the thermoelastic cou-
pling parameter e. As described in the paper, the most advantage
of the generalized thermoelastic model based on heat transfer with
MDD is the free choosing of the delay time factor and the kernel
function, which makes it flexible in applications. In the obtained
numerical results, we demonstrated the different effects of the

time-delay factor, kernel function, Poison’s ratio, and thermoelas-
tic coupling parameter on the variations of the reflection coeffi-
cients and the energy ratios of the reflected qP-, qT- and SV-type
wave as follows.

Figure 2 shows the reflection coefficients (jXjj) profiles for three
values of the time-delay parameter s (0:05; 0:03; 0:01) for a fixed
kernel Kðt; nÞ ¼ 1� ðt� nÞ. It is evident from Fig. 2(a) that the
reflection coefficient jX1j of the reflected qP-wave decreases for
0 deg � h0 � 65 deg and then increases in 65 deg � h0 � 90 deg
to reach unity for all values of s. The maximum of jX1j is unity
which occurs at h0 ¼ 0 deg and 90 deg. Figure 2(b) exhibits that
the reflection coefficient jX2j of the reflected qT-wave attains its
maximum at h0 ¼ 0 deg and then it decreases continuously with
the increasing h0 until vanishes at h0 ¼ 90 deg. From Fig. 2(c), we
see that the reflection coefficient jX3j of the reflected SV-type

Fig. 4 (a)–(b) Variations of jXj j versus h0 for different r when s 5 0:05;K (t2n) 5 12(t2n)/s

Fig. 5 (a)–(d) Variations of jXj j versus h0 for different e when s 5 0:05;K (t ; n) 5 (12(t2n)/s)2
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wave first increases in the range 0 deg � h0 � 50 deg and then
decreases for 50 deg � h0 � 90 deg for each s. It is maximum at
h0 ¼ 50 deg and vanishes at h0 ¼ 0 degand 90 deg.

The key point, noticed from the Figs. 2(a)–2(c), is that while no
significant effects of the delay time factor on the variations of jX1j
and jX3j can be seen, only significant influences of s can be seen
markedly on the variation of jX2j. This is most probably due to the
following mechanism: as shown in Eq. (8) or (9), the MDD are
introduced directly into the heat conduction equation instead of
the constitutive equation to characterize the effects of the delay
time parameter on the reflection coefficients of the various
reflected waves, which in turn leads to the consequence that the
delay time parameter barely influences the reflection coefficient,
jX2j of the reflected qT-wave.

Figure 3 depicts the effect of the Poison’s ratio r on the varia-
tion of the moduli of the energy ratios Ej ðj ¼ 1; 2; 3Þ with h0. We
find that the pattern of each of jEjj with h0 is qualitatively similar
to the pattern of the corresponding reflection coefficient (Supple-
mentary Fig. 2 is available on the ASME Digital Collection),
which is quite appealing as the energy ratios are proportional to
the square of corresponding reflection coefficients at each h0. It is
appeared from these figures that the maximum energy are carried
along the reflected qP-wave and SV-type wave as the magnitude
of E2 is very small as compared to the others. It is also evident
that the moduli of E1 and E2 increase and the jE3j decreases with
an increase in the values of r.

In order to validate the energy balance law at the surface z¼ 0,
the energy ratios jEjj and their sum have been plotted for different
h0 in Fig. 4(a). Since the absolute value of X2 is found to be very
small in comparing to the others, the corresponding energy ratio
E2 is also very small in the entire range of h0. So, jE2j is plotted
after mounting up its original value by 105. It is observed that the
sum jE1 þ E2 þ E3j keeps unity nearly at each h0, which verifies
that the energy balance law at z¼ 0 is satisfied. However,
Fig. 4(b) reveals a smaller deviation from unity of the energy con-
servation index (jE1 þ E2 þ E3j), which is attributed to the loss of
numerical precision. The approximate satisfaction of the energy
balance law validates the present numerical results to a large
extent.

Figure 5 is drawn in order to compare Vj and Qj for the
MDD, LS and the coupled thermoelasticity (CT) [40] theories.
It is observed from Figs. 5(a) and 5(b) that the values of Vj for
CT theory are found to be larger while the value of Vj are found
to be smaller for LS theory. Similar patterns are noticed for the
corresponding attenuation coefficients in Figs. 5(c) and 5(d) for
all the theories. It is also clear from the graphs that the phase
speeds and the attenuation coefficients of the qP- and qT-waves,
respectively, reveal qualitatively similar nature for all the theo-
ries considered; however, dissimilarity lies on the ground of
numerical values.

Supplementary Fig. 1 is available in the Supplemental Materi-
als on the ASME Digital Collection reveals the profiles of jXjj
with h0 for three different kernel function Kðt� nÞ when
s ¼ 0:05. It is evident from these figures that the qualitative
behaviors of the reflection coefficients, jXjj are similar to those
presented in Fig. 2, respectively. Supplementary Fig. 1 is available
on the ASME Digital Collection. The key point, noticed from
Supplementary Figs. 1(a)–1(c), is that while no significant effects
of the kernel function on the variations of jX1j and jX3j can be

seen, only significant influences of Kðt� nÞ can be seen markedly
on the variation of jX2j. The possible reason is explained in Fig. 2.

The effects of Poison’s ratio (r) on the magnitudes of Xj are
depicted in Supplementary Fig. 2 is available on the ASME Digi-
tal Collection. In this purpose, we choose three values of r
as 0:34; 0:35, and 0.36 when Kðt; nÞ ¼ 1� ðt� nÞ=s; s ¼ 0:05;
e ¼ 0:0168, respectively. These figures express that r affects
prominently on each of the reflection coefficient jXjj. While r has
an increasing effect on the variations of jX1j and jX2j, it acts to
decrease jX3j. Supplementary Fig. 2 is available on the ASME
Digital Collection.

Supplementary Fig. 3 is available on the ASME Digital Collec-
tion is drawn to show the influence of the thermomechanical
coupling parameter (e) on the variations of jXjj at fixed
Kðt; nÞ ¼ 1� ðt� nÞ=s; s ¼ 0:05. Here, we take three values of e
as 0; 0:0168 and 0.0336. We see from these figures that the abso-
lute values of X1 and X2 have large values for large e, meaning it
has an increasing effect on jX1j and jX2j at each angle of inci-
dence, while it has an decreasing effect on jX3j. We can also
observe that the influence of e on jX1j and jX2j is very small as
compared to the influence of e on jX3j. Another interesting fact is
depicted in Supplementary Fig. 3(b) is available on the ASME
Digital Collection that the reflection coefficient jX2j of the
reflected qT-wave vanishes at each angle h0 for e ¼ 0, which is in
complement agreement with our analytical results obtained in
Sec. 5. Supplementary Fig. 3 is available on the ASME Digital
Collection.

The dependency of the phase speeds Vj and the corresponding
attenuation coefficients Qj ðj ¼ 1; 2Þ of the qP- and qT-waves on
the angular frequency x for the range ð1 � x � 10Þ is expressed
in Supplementary Figs. 4 and 5 are available on the ASME Digital
Collection, respectively, with the variations of s and Kðt; nÞ.
Supplementary Figs. 4(a) and 4(b) on the ASME Digital Collec-
tion depict that V1 < V2 in the entire range of x. The phase speed
V1 is decreasing while V2 increases with increasing x for all
the values of s. Supplementary Figs. 4(c) and 4(d) are on the
ASME Digital Collection exhibit that the qP-wave is less attenu-
ated than qT-wave. Supplementary Fig. 5 on the ASME Digital
Collection reveals that the effect of Kðt; nÞ on Vj and Qj is qualita-
tively similar to the effect of s. From all these figures, it appears
that both of the qP- and qT-waves are dispersive in nature as well
as attenuated which agree with our analytical results discussed
in Sec. 4. Supplementary Figs. 4 and 5 on the ASME Digital
Collection.

8 Conclusion

The following points can be concluded according to the analy-
sis above:

(1) The reflection coefficients and the corresponding energy
ratios depend on the angle of incidence, Poison’s ratio, and
the thermoelastic coupling parameter.

(2) The time-delay and the kernel function have no significant
effect on the reflection coefficients of the reflected qP- and
SV-type waves, whereas these quantity reveals a significant
effect on the reflection coefficient of the reflected qT-wave.

(3) The Poison’s ratio has a prominent effect on the reflection
coefficients and the corresponding energy ratios. It shows no
effect on the phase speeds and the attenuation coefficients.

(4) The thermoelastic coupling parameter plays a significant
role in the behavior of all the reflection coefficients and
hence on the corresponding energy ratios also. The reflec-
tion coefficient of the reflected qT-wave is highly influ-
enced by the thermoelastic coupling parameter as
compared to the others two.

(5) The time-delay and the kernel function reveal a strong
effect on the phase speeds and the attenuation coefficients
of the qP- and qT-waves. The phase speed and the

Table 1 Numerical values of the material constants

Symbol Value Unit Symbol Value Unit

k 7:76� 1010 N=m2 l 3:86� 1010 N=m2

T0 293 K q 8954 kg=m3

Ce 383.1 m2=K KT 386 N=K s
aT 383.1 /K e 0.0168
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attenuation coefficient of the SV-type wave are independ-
ent of the time-delay and the kernel function.

(6) We hope that our present theoretical results may provide
some useful information for experimental scientists,
researchers, and seismologists working on wave propaga-
tion problems in thermoelastic solid.
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